
Debugging Kubernetes
Applications on the Fly

https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/
https://www.rookout.com/

Over the recent years, software development organizations have seen

a major shift in where they build and run their applications. Teams have

transitioned from building applications that run exclusively on-prem to

microservices applications that are built to run natively in the cloud. This

shift gives businesses more flexibility as well as quick and easy access
to enterprise services without the need to host costly applications and

infrastructure. As part of this migration, many organizations have adopted

the use of containers which aim to solve many issues developers have

typically faced in portability and scalability of applications. Kubernetes

has quickly become the defacto standard for container orchestration
when building modern cloud native applications.

While the power of cloud native and Kubernetes based technologies

promises organizations the ability to build software quickly and scale
effortlessly, debugging these Kubernetes based applications can often

prove challenging.

Teams have transitioned from building applications that

run exclusively on-prem to microservices applications that

are built to run natively in the cloud.

One of the biggest challenges with debugging applications

built to run in Kubernetes is that local debugging is a major

obstacle for developers.

When looking at the debugging challenges posed, it’s
clear that there is room for improvement and potentially

a better approach, such as one that allows for debugging

applications live in their native environments by allowing

developers to add “virtual” log lines on the fly and collect
snapshots of data from those running applications.

With Rookout, by simply placing a “Non-breaking
breakpoint” on a line of code, developers can extract

information typically only found in a local debugger from

their applications without ever stopping them or needing to

redeploy.

K E Y TA K E AWAY S:

One of the biggest challenges
with debugging applications
built to run in Kubernetes is
that local debugging is a major
obstacle for developers.

https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/
https://www.rookout.com/
https://www.rookout.com/blog/debugging-the-hidden-productivity-killer

Traditional Challenges with Debugging
Kubernetes Based Applications

One of the biggest challenges with debugging applications built to run

in Kubernetes is that local debugging is a major obstacle for developers.

While there are Kubernetes solutions like Minikube which allow you to
spin up clusters locally on your laptop or desktop, the fact is that there are
oftentimes major differences between Kubernetes platforms that make
such an approach impractical. For example, if you’ve built an application
and are running it in production in Google Cloud’s managed Kubernetes
offering GKE, local testing in Minikube may be more trouble than it’s
worth. Anytime you’re debugging, you ideally want an environment which
mirrors your production environment as closely as possible.

Many developers choose to utilize local debugging options such as
Docker compose, which is a tool that allows the running of multi-

container Docker applications. This approach allows developers to define
a YAML file containing information needed to run the relevant services
making up the application. While this approach can often work well for
local debugging, there are security and infrastructure specific conditions
which might not be reproducible in a Docker compose environment when
your production environment is Kubernetes. There are solutions which

are being developed that aim to make local development easier such
as telepresence but these require that you proxy into the network where
Kubernetes is running, which could be a security risk.

Debugging applications
running in Kubernetes
pods can be inherently
difficult due to the
fact that pods are
ephemeral in nature
and can be spun down
anytime based on the
Kubernetes scheduler.

Looking beyond the infrastructure itself, Kubernetes has many new

commands and technical areas to become familiar with in order to

effectively debug the services you develop. Debugging applications

running in Kubernetes pods can be inherently difficult due to the fact that
pods are ephemeral in nature and can be spun down anytime based on

the Kubernetes scheduler (yes, even if you are in the middle of debugging

one of them).

https://www.rookout.com/
https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://docs.docker.com/compose/?utm_source=thenewstack&utm_medium=website&utm_campaign=platform
https://www.telepresence.io/
https://kubernetes.cn/docs/tasks/debug-application-cluster/
https://kubernetes.cn/docs/tasks/debug-application-cluster/

Real Time Debugging of Production Workloads

Looking at the debugging challenges above, it’s clear that there is room
for improvement and potentially a better approach. One such approach,

enabled by Rookout, allows for debugging applications live in their native
environments by allowing developers to add “virtual” log lines on the fly
and collect snapshots of data from those running applications. By simply

placing a “Non-breaking breakpoint” on a line of code, developers can
extract information typically only found in a local debugger from their

applications without ever stopping them or needing to redeploy.

Teams spend far too much time
trying to reproduce defects in
staging or pre-prod environments
where attempts are made as
much as possible to simulate
the configuration of production
environments.

With this approach, developers can effectively debug their code by

decoupling the code itself from the underlying infrastructure where

it’s running. This allows teams developing applications for Kubernetes
to focus on what their code is doing when a defect happens. Teams

spend far too much time trying to reproduce defects in staging or pre-

prod environments where attempts are made as much as possible to

simulate the configuration of production environments. While this can
be possible, it’s far more effective to debug and collect relevant data
from the same environment where the defect occurs. Having a real time

production grade debugging tool in place can dramatically improve the

understandability of the code developers both write and maintain.

Deploying a Kubernetes Application and Real-
Time Debugging

One of the best ways of understanding how real time debugging works is
to take a look at a hands-on example. In this section, we will look at the
following:

1. Instrumenting a sample application with the Rookout SDK

2. Deploying that application into a Kubernetes cluster

Note: We’ll assume that you have a cluster provisioned and can connect
to it with kubectl for this example if you want to follow along.

3. Perform real-time debugging of the application

https://www.rookout.com/
https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/
https://www.rookout.com/blog/debugging-in-production-how-to-stop-fearing-the-inevitable

Instrumenting the Application

To start, let’s take a look at how the Rookout SDK is configured within an
application. This example will use a To-Do application written in Python.

1. To start, open up the repository found here: https://github.com/

Rookout/tutorial-python

2. Next open up the app.py file

- Scroll down to the bottom of the file and take note of the following:

import rook

rook.start()

This is how you import the rook package into your application and
tell it to start processing. The SDK should be started just before
the application begins executing.

- Note that the rook package can be installed via the following
command:

pip install rook

3. There is a Docker file inside the repository which allows you to build an
image, but for this example, to simplify things we’ll use an image which
has already been built and is hosted on the Rookout Docker Huge page
here: https://hub.docker.com/r/rookout/tutorial-python

That’s all that is required to configure the Rookout SDK to work within
an application. In short, the Rookout SDK is deployed as a dependency
of your application running side by side with your codebase. In the next
section, we will take a look at deploying the application to a Kubernetes
cluster.

Just because you’re adopting
new and cutting edge
technologies that may have
their own set of debugging
challenges, it doesn’t mean
that your development needs
to slow down.

https://www.rookout.com/
https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/
https://github.com/Rookout/tutorial-python
https://github.com/Rookout/tutorial-python
https://hub.docker.com/r/rookout/tutorial-python

Deploying the Application

Now, let’s deploy the application to a Kubernetes cluster.

1. To start, you’ll want to clone the repository here which contains
relevant Kubernetes YAML files for the Deployment and Service in
Kubernetes: https://github.com/Rookout/deployment-examples/tree/
master/python-kubernetes/rookout-service

2. Before they’re ready for deployment we will make a few changes to
ensure the correct environment variables are being passed to Rookout:

- Open app-deployment.yaml. Notice we’re using the tutorial-python
image from Docker Hub:
containers:

- name: rookout-demo-app

 image: rookout/tutorial-python

- Next, notice that we’re passing the Rookout token as an
environment variable. The token is a key specific to your
organization and should be kept private. We’ll be creating a secret
key to store this in our cluster later.

 env:

 - name: ROOKOUT_TOKEN

 valueFrom:

 secretKeyRef:

 name: rookout

 key: token

- When using Rookout it’s also helpful to pass a label which is tied
to your application instance so that when using Rookout you can
filter on specific application instances or services that you want
to debug or collect data from. A label is simply a name:value

pair which you can name as you see fit. To do this we’ll add one
additional environment variable with a label:

 env:

 - name: ROOKOUT_LABELS

 value: “app:python-tutorial”

 - name: ROOKOUT_TOKEN

 valueFrom:

 secretKeyRef:

 name: rookout

 key: token

3. Finally, we’ll create the Kubernetes secret and deploy the application:

- Create the secret:

- kubectl create secret generic rookout

--from-literal=token=<Your-Rookout-Token>

- Deploy the application:

- kubectl apply -f app-deployment.yaml -f app-service.yaml

- And finally access the external IP address of our service:
- kubectl get svc rookout-demo-app-service

From here you should be able to access the To-Do application front end

running in the Kubernetes cluster.

https://www.rookout.com/
https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/

Real-time Debugging

Finally, we’re ready to debug the application while it’s running on the fly!

1. After setting up the Rookout SDK and deploying the application, the
connected Application instance should be viewable from the App

Instances page within Rookout as shown below:

2. From here the next step is to connect to your source code repository

so that you can set Non-breaking breakpoints, or data collection
points, within your running application instance. Rookout can also be
integrated into your CI/CD process so that your source code repository
can be auto fetched based on the version of your code running in your

test or production environment by setting two environment variables:

- ROOKOUT_REMOTE_ORIGIN=<your git URL>

- ROOKOUT_COMMIT=<commit hash of the code running in your

environment>

Note that your source code never leaves your network and is never
viewable by Rookout:

3. After connecting the source code repository, a Non-breaking breakpoint

can be set within the app.py file to collect data. In this case, the
breakpoint is set at line 105 within the add_todo() method which will be

invoked every time a new todo item is added to the list.

https://www.rookout.com/
https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/

Finally, we can add a todo item to the list with the todo

application and get back a snapshot from the running system
including all the local variables, server and process information,

a stack trace, and tracing information:

Tying it all Together

And there you have it. We’ve shown how you can dynamically debug
a live application running in a Kubernetes cluster just like you would
with an application running locally tied to a debugger in an IDE. Just
because you’re adopting new and cutting edge technologies that may
have their own set of debugging challenges, it doesn’t mean that your
development needs to slow down. Adopting new technologies that give

deeper insight into what’s happening with running applications while
they’re running in their native environments helps to increase developer

velocity and improves the mean time to repair (MTTR) of often hard to
reproduce issues. This in turn increases the overall understandability and

maintainability of mission critical applications.

BUGS AWAY

https://www.rookout.com/
https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/
https://www.rookout.com/blog/five-ways-to-improve-developer-velocity
https://www.rookout.com/blog/five-ways-to-improve-developer-velocity
https://www.rookout.com/blog/understandability
https://www.rookout.com/company/contact
https://www.rookout.com/company/contact

