
Debugging Kubernetes
Applications on the Fly

Over the recent years, software development organizations have seen

a major shift in where they build and run their applications. Teams have

transitioned from building applications that run exclusively on-prem to

microservices applications that are built to run natively in the cloud. This

shift gives businesses more flexibility as well as quick and easy access
to enterprise services without the need to host costly applications and

infrastructure. As part of this migration, many organizations have adopted

the use of containers which aim to solve many issues developers have

typically faced in portability and scalability of applications. Kubernetes has

quickly become the defacto standard for container orchestration when
building modern cloud native applications.

While the power of cloud native and Kubernetes based technologies

promises organizations the ability to build software quickly and scale
effortlessly, debugging these Kubernetes based applications can often
prove challenging.

Teams have transitioned from building applications

that run exclusively on-prem to microservices

applications that are built to run natively in the cloud.

One of the biggest challenges with debugging

applications built to run in Kubernetes is that local

debugging is a major obstacle for developers.

When looking at the debugging challenges posed,
it’s clear that there is room for improvement and

potentially a better approach, such as one that

allows for debugging applications live in their native

environments by allowing developers to add “virtual”

log lines on the fly and collect snapshots of data from
those running applications.

With Rookout, by simply placing a “Non-breaking
breakpoint” on a line of code, developers can extract
information typically only found in a local debugger

from their applications without ever stopping them or

needing to redeploy.

KEY TAKEAWAYS:

One of the biggest challenges with
debugging applications built to run in
Kubernetes is that local debugging is a major
obstacle for developers.

https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/

Traditional Challenges with Debugging
Kubernetes Based Applications

One of the biggest challenges with debugging applications built

to run in Kubernetes is that local debugging is a major obstacle for

developers. While there are Kubernetes solutions like Minikube which
allow you to spin up clusters locally on your laptop or desktop, the fact
is that there are oftentimes major differences between Kubernetes
platforms that make such an approach impractical. For example, if
you’ve built an application and are running it in production in Google

Cloud’s managed Kubernetes offering GKE, local testing in Minikube

may be more trouble than it’s worth. Anytime you’re debugging,

you ideally want an environment which mirrors your production

environment as closely as possible.

Many developers choose to utilize local debugging options such as
Docker compose, which is a tool that allows the running of multi-

container Docker applications. This approach allows developers to
define a YAML file containing information needed to run the relevant
services making up the application. While this approach can often
work well for local debugging, there are security and infrastructure
specific conditions which might not be reproducible in a Docker
compose environment when your production environment is

Kubernetes. There are solutions which are being developed that aim to

make local development easier such as telepresence but these require
that you proxy into the network where Kubernetes is running, which
could be a security risk.

Debugging applications
running in Kubernetes
pods can be inherently
difficult due to the fact
that pods are ephemeral
in nature and can be spun
down anytime based on
the Kubernetes scheduler.

Looking beyond the infrastructure itself, Kubernetes has many new

commands and technical areas to become familiar with in order to

effectively debug the services you develop. Debugging applications
running in Kubernetes pods can be inherently difficult due to the fact
that pods are ephemeral in nature and can be spun down anytime

based on the Kubernetes scheduler (yes, even if you are in the middle

of debugging one of them).

https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/

Real Time Debugging of Production
Workloads

Looking at the debugging challenges above, it’s clear that there is

room for improvement and potentially a better approach. One such

approach, enabled by Rookout, allows for debugging applications live
in their native environments by allowing developers to add “virtual”

log lines on the fly and collect snapshots of data from those running
applications. By simply placing a “Non-breaking breakpoint” on a line
of code, developers can extract information typically only found in a

local debugger from their applications without ever stopping them or

needing to redeploy.

With this approach, developers can effectively debug their code by
decoupling the code itself from the underlying infrastructure where

it’s running. This allows teams developing applications for Kubernetes

to focus on what their code is doing when a defect happens. Teams

spend far too much time trying to reproduce defects in staging or

pre-prod environments where attempts are made as much as possible

to simulate the configuration of production environments. While this
can be possible, it’s far more effective to debug and collect relevant
data from the same environment where the defect occurs. Having a

real time production grade debugging tool in place can dramatically

improve the understandability of the code developers both write and

maintain.

Deploying a Kubernetes Application and
Real-Time Debugging

One of the best ways of understanding how real time debugging works
is to take a look at a hands-on example. In this section, we will look at
the following:

1. Instrumenting a sample application with the Rookout SDK
2. Deploying that application into a Kubernetes clusterNote: We’ll

assume that you have a cluster provisioned and can connect to it

with kubectl for this example if you want to follow along.
3. Perform real-time debugging of the application

Teams spend far too much
time trying to reproduce
defects in staging or pre-prod
environments where attempts
are made as much as possible
to simulate the configuration
of production environments.

https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/

Just because you’re adopting new
and cutting edge technologies
that may have their own set of
debugging challenges, it doesn’t
mean that your development
needs to slow down.

Instrumenting the Application

To start, let’s take a look at how the Rookout SDK is configured within
an application. This example will use a To-Do application written in

Python.

1. To start, open up the repository found here: https://github.com/

Rookout/tutorial-python
2. Next open up the app.py file
- Scroll down to the bottom of the file and take note of the following:

import rook

rook.start()

This is how you import the rook package into your application and
tell it to start processing. The SDK should be started just before the
application begins executing.

- Note that the rook package can be installed via the following
command:

pip install rook

There is a Docker file inside the repository which allows you to build an
image, but for this example, to simplify things we’ll use an image which

has already been built and is hosted on the Rookout Docker Huge
page here: https://hub.docker.com/r/rookout/tutorial-python

That’s all that is required to configure the Rookout SDK to work
within an application. In short, the Rookout SDK is deployed as
a dependency of your application running side by side with your

codebase. In the next section, we will take a look at deploying the
application to a Kubernetes cluster.

https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/

Deploying the Application

Now, let’s deploy the application to a Kubernetes cluster.

1. To start, you’ll want to clone the repository here which contains

relevant Kubernetes YAML files for the Deployment and Service in
Kubernetes: https://github.com/Rookout/deployment-examples/
tree/master/python-kubernetes/rookout-service

2. Before they’re ready for deployment we will make a few changes
to ensure the correct environment variables are being passed to

Rookout:

- Open app-deployment.yaml. Notice we’re using the tutorial-
python image from Docker Hub:
containers:

- name: rookout-demo-app

 image: rookout/tutorial-python

- Next, notice that we’re passing the Rookout token as an
environment variable. The token is a key specific to your
organization and should be kept private. We’ll be creating a
secret key to store this in our cluster later.

 env:

 - name: ROOKOUT_TOKEN

 valueFrom:

 secretKeyRef:

 name: rookout

 key: token

- When using Rookout it’s also helpful to pass a label which is tied
to your application instance so that when using Rookout you can
filter on specific application instances or services that you want
to debug or collect data from. A label is simply a name:value

pair which you can name as you see fit. To do this we’ll add one
additional environment variable with a label:

 env:

 - name: ROOKOUT_LABELS

 value: “app:python-tutorial”

 - name: ROOKOUT_TOKEN

 valueFrom:

 secretKeyRef:

 name: rookout

 key: token

3. Finally, we’ll create the Kubernetes secret and deploy the
application:

- Create the secret:

- kubectl create secret generic rookout

--from-literal=token=<Your-Rookout-Token>

- Deploy the application:

- kubectl apply -f app-deployment.yaml -f app-service.yaml

- And finally access the external IP address of our service:
- kubectl get svc rookout-demo-app-service

From here you should be able to access the To-Do application front
end running in the Kubernetes cluster.

https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/

Note that your source code never leaves your network and is never
viewable by Rookout:

3. After connecting the source code repository, a Non-breaking

breakpoint can be set within the app.py file to collect data. In this
case, the breakpoint is set at line 105 within the add_todo() method

which will be invoked every time a new todo item is added to the
list.

Real-time Debugging

Finally, we’re ready to debug the application while it’s running on the
fly!

1. After setting up the Rookout SDK and deploying the application,
the connected Application instance should be viewable from the

App Instances page within Rookout as shown below:

2. From here the next step is to connect to your source code
repository so that you can set Non-breaking breakpoints, or
data collection points, within your running application instance.

Rookout can also be integrated into your CI/CD process so
that your source code repository can be auto fetched based

on the version of your code running in your test or production

environment by setting two environment variables:

- ROOKOUT_REMOTE_ORIGIN=<your git URL>

- ROOKOUT_COMMIT=<commit hash of the code running in

your environment>

https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/

BUGS AWAY

Tying it all Together

And there you have it. We’ve shown how you can dynamically debug

a live application running in a Kubernetes cluster just like you would
with an application running locally tied to a debugger in an IDE. Just
because you’re adopting new and cutting edge technologies that may

have their own set of debugging challenges, it doesn’t mean that your

development needs to slow down. Adopting new technologies that

give deeper insight into what’s happening with running applications

while they’re running in their native environments helps to increase

developer velocity and improves the mean time to repair (MTTR) of
often hard to reproduce issues. This in turn increases the overall

understandability and maintainability of mission critical applications.

Finally, we can add a todo item to the list with the todo application and
get back a snapshot from the running system including all the local
variables, server and process information, a stack trace, and tracing
information:

https://github.com/Rookout
https://www.instagram.com/rookoutlabs/
https://www.youtube.com/channel/UC8Fkng99PnGKIA0PrRSbBlQ
https://twitter.com/rookoutlabs
https://www.facebook.com/rookoutlabs
https://www.linkedin.com/company/rookout/
https://www.rookout.com/company/contact
https://www.rookout.com/try-free/

